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 This research examines the effectiveness of Long Short-Term Memory 

(LSTM) neural networks for predicting Africa Energy Corp. (AFE.V) stock 

prices, comparing a standard LSTM implementation with a Grid Search 

optimized LSTM model. The research shows that hyperparameter 

optimization through Grid Search significantly improves prediction accuracy. 

The optimized LSTM model achieved superior performance across all 

evaluation metrics, with a test RMSE of 0.01, MAE of 0.01, MAPE of 3.41%, 

and R² of 0.9518, showing substantial improvement over the model without 

optimization. These findings emphasize the importance of hyperparameter 

tuning in deep learning models for financial time series forecasting and 

provide empirical evidence supporting the application of optimized LSTM 

networks for stock price prediction. 
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1. INTRODUCTION 

Stock market prediction remains one of the most challenging applications of machine learning due to 

the complex, non-linear, and volatile characteristics of financial markets. Traditional statistical methods are 

often unable to capture the complex patterns and dependencies in stock price movements[1] . This inability is 

the main driver for the development of alternative methods that are more sophisticated and adaptive, especially 

in the era of big data and increasingly powerful computing. In recent years, deep learning approaches, 

particularly Recurrent Neural Networks (RNNs) and their variants such as Long Short-Term Memory (LSTM) 

networks, have shown promising results in time series forecasting tasks, including stock price prediction[1]–

[3] . These approaches are able to capture complex patterns and non-linear relationships that are difficult to 

identify by conventional statistical models. 

LSTM networks, first introduced by Hochreiter and Schmidhuber[4] , were specifically designed to 

overcome the vanishing gradient problem that occurs in standard RNNs, making them particularly suitable for 

studying long-term dependencies in sequential data. The superiority of the LSTM architecture lies in its ability 

to "remember" relevant information and "forget" irrelevant information through a sophisticated gating 

mechanism, enabling effective processing on long temporal data sets[5] . Although LSTMs have demonstrated 

remarkable capabilities in capturing temporal patterns in financial time series data, their performance is highly 

dependent on the proper selection of hyperparameters[6] . Hyperparameters such as number of units, dropout 

rate, learning rate, batch size, and number of epochs have a significant influence on the model's ability to learn 

and generalize. Improper hyperparameter settings can also cause the model to not only lose accuracy, but also 

affect the interpretation and generalization of the model on new data .[7], [8] 

The hyperparameter tuning process is essential to optimize the performance of neural networks. Grid 

Search is a systematic approach to hyperparameter optimization that thoroughly searches through pre-defined 
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hyperparameter combinations to identify the optimal configuration[9] . Although it requires high computational 

intensity, Grid Search offers a comprehensive exploration of the hyperparameter space, potentially resulting in 

significant model performance improvements. Accurate stock price prediction has far-reaching practical 

implications not only for individual investors and traders, but also for financial institutions, portfolio managers, 

and policy makers. The ability to predict stock price movements with greater precision can improve investment 

strategies and risk management, facilitate more informed decision-making in asset allocation, stabilize markets 

by reducing information asymmetry, and improve overall market efficiency. 

In an era of heightened market volatility and increased global integration, the need for reliable and 

accurate prediction models has become even more pressing. Even slight improvements in prediction accuracy 

can translate into significant financial gains, making research in prediction model optimization invaluable. The 

energy sector, in particular, exhibits a unique pattern of volatility influenced by geopolitical factors, global 

supply and demand dynamics, environmental regulations and technological developments. Africa Energy 

Corp. (AFE.V), as an international oil and gas exploration company with major operations in Africa, provides 

an interesting case study to evaluate the effectiveness of stock prediction models due to the complexity of 

factors affecting its stock performance. 

Several studies have shown that the use of LSTM is superior to linear regression models as well as 

other traditional models such as ARIMA. For example, research by Jolhe et al. showed that LSTM can predict 

stock price movements more accurately than classical statistical-based techniques such as ARIMA and linear 

regression[10] . Lin et al. also found that the LSTM model combined with multilingual sentiment analysis 

provides better results in predicting stock prices .[11] 

However, although LSTM offers many advantages, some studies show that the prediction results are 

not always consistent, and sometimes the results obtained are not as expected. For example, Lawi et al. noted 

that some LSTM and Gated Recurrent Units (GRU) implementations still face challenges in achieving 

satisfactory consistency in prediction accuracy using time sequence data[12] . In contrast, research by Li et al. 

showed that models augmented with feature selection techniques can improve stock price prediction accuracy 

compared to standard LSTM models .[13] 

Furthermore, other factors such as parameter selection and initial data processing also play an 

important role in the success of LSTM models in predicting stock prices. In a study by Zhao and Chen, it was 

revealed that parameter optimization of LSTM is essential to maximize its performance[14] . On the other 

hand, some studies using hybrid approaches are becoming increasingly popular, where LSTM is combined 

with other methods such as CNN to optimize prediction results .[15] 

While these studies provide valuable insights into the potential of LSTM and the importance of 

hyperparameter optimization, there is still a gap in the literature regarding the specific application of Grid 

Search to optimize LSTM models in the context of energy stock prediction, especially for companies operating 

in emerging markets such as Africa. The main objective of this study is to compare the predictive performance 

of a standard LSTM model with an LSTM model optimized via Grid Search for forecasting the stock price of 

Africa Energy Corp. We hypothesize that systematic hyperparameter optimization via Grid Search will result 

in a substantial improvement in prediction accuracy compared to an LSTM implementation without 

optimization. 

This research makes several important contributions to the literature. First, this study provides the first 

empirical evaluation of the effectiveness of Grid Search optimization for LSTM models in the context of stock 

prediction of energy companies operating in Africa. Second, this study identifies the optimal hyperparameter 

configuration for LSTM models in this specific application, providing practical guidelines for researchers and 

practitioners. Third, this research quantitatively measures the performance improvement achieved through 

systematic hyperparameter optimization compared to conventional LSTM approaches. Fourth, this study 

provides a methodology that can be adapted and applied to stocks in other sectors or in different geographic 

markets. The findings of this research have significant theoretical and practical implications, contributing a 

better understanding of how to optimize deep learning models for financial time series analysis and providing 

insight into the practical application of such models in trading and investment strategies. 

 

 

2. METHOD 

2.1.  Data Collection and Pre-processing 

2.1.1. Data Sources and Characteristics 

Historical stock price data for Africa Energy Corp. (AFE.V) was gathered from Yahoo Finance for 

the most recent five-year period (2016-2022). The dataset includes the daily closing price, opening price, 

highest price, lowest price, and trading volume. For this study, we focus on the closing price as the target 

variable for prediction, as the closing price is widely regarded as the most representative indicator of daily 

market sentiment .[16], [17] 
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Figure 1. Share movement of Africa Energy Corp. 

 

2.1.2. Dataset Separation 

The data is divided into training (80%) and testing (20%) sets, maintaining the temporal order of the 

time series to avoid leakage of future information into the training process. This approach ensures that the 

model is evaluated on its ability to predict unseen future values based on historical patterns, simulating real-

world prediction scenarios. 

 

2.1.3. Pre-processing Pipeline 

The pre-processing pipeline in this study consists of several main steps. First, the handling of missing 

values is done by the forward fill method, where the missing values are replaced by the last known valid value. 

This approach preserves the temporal characteristics of the data and is considered a suitable practice for 

financial time series data[18] . Next, feature normalization is applied using the min-max method to scale the 

data to the range [0,1]. This normalization is important in neural network models as it accelerates convergence 

during training as well as prevents the dominance of features with larger scales . [19] 

The next stage is feature extraction, where additional technical indicators are calculated from the raw 

price data. Some of the indicators used include Simple Moving Average (SMA) with various time windows (5, 

10, and 20 days), Relative Strength Index (RSI), Moving Average Convergence Divergence (MACD), as well 

as Bollinger Bands. The selection of these indicators is based on their proven relevance in financial technical 

analysis[20] . After that, a sequence is created by building a 60-day lookback window as a feature to predict 

the next day's closing price as a target. The selection of this window is based on time series autocorrelation 

analysis and previous research which shows that a period of two to three months is able to capture most of the 

short-term seasonal patterns in stock data . [21] 

To improve model robustness and prevent overfitting, data augmentation techniques were applied. 

These techniques include the addition of low magnitude Gaussian noise (σ = 0.01) as well as the use of window 

sliding with an overlap of 50%. This approach aims to enrich the training dataset while maintaining the 

underlying statistical characteristics .[22] 

 

2.2. Model Architecture 

2.2.1. Standard LSTM Model 

The baseline model consists of a standard LSTM architecture without hyperparameter optimization. 

The model implementation is done using the TensorFlow 2.9 framework with Keras backend. This model 

includes: 

1. The input layer receives a sequence with a length of 60 timesteps and several features (closing prices 

and technical indicators). 

2. LSTM layer with 100 units, using tanh activation for cell state update and sigmoid activation for gate 

3. Dropout layer with a rate of 0.2 to prevent overfitting by randomly disabling 20% of neurons during 

training 

4. Dense output layer with linear activation function to generate closing price prediction 

The Adam optimizer with a learning rate of 0.001 was used due to its adaptive properties that support 

efficient convergence in non-convex parameter spaces[23] . Mean Squared Error (MSE) was chosen as the loss 
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function due to its suitability for regression problems and its sensitivity to outliers which can be important 

indicators in stock price movements. 

The model was trained with a batch size of 32 for 50 epochs. Initial validation was applied using a 

sliding window approach to the temporal validation set to monitor model generalization and prevent overfitting. 

 

2.2.2. Grid Search Optimized LSTM Model 

For the optimized model, we implemented Grid Search to systematically search through a predefined 

hyperparameter space. The implementation uses GridSearchCV from scikit-learn with KerasRegressor 

wrapper for integration with TensorFlow/Keras. 

Hyperparameters considered for optimization include: 

1. Number of LSTM units: [50, 100, 150] This range was chosen to evaluate the tradeoff between lower 

(50 units) and higher (150 units) model capacities, covering the baseline model (100 units). 

2. Dropout rate: [0.2, 0.3, 0.4] These values were chosen to test different levels of regularization, from 

moderate (0.2) to more aggressive (0.4) regularization. 

3. Learning rate: [0.001, 0.01, 0.05] This range allows exploration from more conservative learning rates 

(0.001, the default value for Adam) to more aggressive values that may speed up convergence but risk 

instability. 

4. Batch size: [16, 32, 64] Smaller batch sizes (16) may provide more precise but more variable gradient 

updates, while larger batch sizes (64) provide more stable but possibly less specific gradient estimates. 

5. Number of epochs: [30, 48, 60] This range of epochs allows exploration of different training durations, 

from shorter training that can prevent overfitting to longer training that can improve convergence. 

Grid Search evaluates all 243 combinations of these hyperparameters, using 5-fold time series cross-

validation with TimeSeriesSplit to assess performance. This time series-specific cross-validation approach 

preserves the temporal integrity of the data, ensuring that the model is always evaluated at a future period 

relative to the training data, mirroring real-world applications. 

Once the optimal hyperparameters are identified, the final LSTM model is trained with this 

configuration using the entire training dataset, and its performance is evaluated on the testing dataset. 

 

2.3. Model Evaluation 

Both models were evaluated using a comprehensive set of performance metrics to provide a holistic 

understanding of their predictive capabilities. This evaluation includes several key metrics, namely Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), coefficient 

of determination (R²), and prediction accuracy. 

For a more in-depth analysis, we also evaluated the model using additional metrics: 

1. Directional Accuracy: The percentage by which the model correctly predicts the direction of price 

movement (up or down), an important metric for trading applications. 

2. Maximum Drawdown: The maximum peak-to-trough decline in the model's signal-based trading 

simulation equity curve, measuring downside risk. 

3. Sharpe Ratio: The ratio of excess returns to their volatility, measuring risk-adjusted returns if the 

model is used for trading. 

In addition to the quantitative metrics, we performed visual analysis by comparing plots of predictions 

against actual values, visualization of residual errors, and additional diagnostic diagrams to provide qualitative 

insights into model performance. 

 

3. RESULTS AND DISCUSSION 

3.1.  Results 

3.1.1. Exploratory Data Analysis 

Before presenting the model results, we conducted an exploratory data analysis to understand the time 

series characteristics of Africa Energy Corp's share price. This analysis revealed significant share price 

volatility over the study period, with fluctuations associated with exploration developments, changes in global 

energy prices and geopolitical factors.  Descriptive statistics show an average closing price of 0.27 CAD with 

a standard deviation of 0.12 CAD. Autocorrelation analysis revealed significant temporal dependence up to lag 

15, indicating the presence of a modelable time series structure.  

The Augmented Dickey-Fuller test yielded a p-value of 0.03, indicating that the time series are 

stationary at the 5% significance level.Trend analysis highlights cyclical patterns associated with the global 

energy cycle and weaker seasonal influences. These patterns support the use of LSTMs that can capture long-

term dependencies and non-linear structures in the data. 

 

 



Int. J. Artif. Intell. Informatics ISSN: 2622-626X  

 

Comparative Analysis of LSTM and Grid Search Optimized LSTM for Stock Prediction: ... (Boho Mokona) 

5 

3.1.2. Standard LSTM Model Performance 

The standard LSTM model without hyperparameter optimization achieves the following results: 

 

Table 1. Model Evaluation 

Metrics Training Testing 

RMSE 0,054 0,043 

MAE 0,054 0,034 

MAPE 4,95% 4,51% 

R² 0,9392 0,9036 

Accuracy 95,05% 95,49% 

 

Table 2. Additional Metrics 

Metrics Value 

Directional Accuracy 76,23% 

Maximum Drawdown 8,74% 

Sharpe Ratio 1,85 

 

This metric shows that the standard LSTM model achieves solid predictive performance, with a test 

R² of 0.9036 indicating that the model explains approximately 90.36% of the variability in Africa Energy Corp's 

stock price. The test MAPE of 4.51% translates to a test accuracy of 95.49%, indicating a high level of 

precision. Learning curve analysis revealed that the model converged after about 35 epochs, with marginal 

performance improvement thereafter. The relatively close MAE and RMSE values indicate that the data has 

no significant outliers affecting the training process. On the test set, the model demonstrated the ability to 

capture general trends and turning points in the data, although it was sometimes late in identifying sharp trend 

changes. The directional accuracy of 76.23% indicates that the model successfully predicted the direction of 

price movement in three out of four cases, which is relevant for practical trading applications. 

 

3.1.3. Optimal Hyperparameter Identification 

The Grid Search process that evaluated 243 hyperparameter combinations identified the following 

optimal configuration: 

 

Table 3. Grid Search Parameters in LSTM Neural Network Architecture 

Parameters Selected Optimal Value 

Number of LSTM Units 50 

Dropout Rate 0,3 

Learning Rate 0.01 

Batch Size 16 

Number of Epochs 48 

It is worth noting that the optimal configuration includes a smaller number of LSTM units (50) 

compared to the default model (100), a higher dropout rate (0.3 vs 0.2), and a more aggressive learning rate 

(0.01 vs 0.001). This suggests that smaller but better-tuned models can outperform larger models with the 

default configuration, providing important insights into the tradeoff between model complexity and appropriate 

training parameters. The smaller batch size (16) in the optimal configuration compared to the baseline model 

(32) indicates that more frequent gradient updates with less precise but faster estimates are more effective for 

this dataset compared to less frequent but more stable updates. 

3.1.4. Performance of Grid Search Optimized LSTM Model 
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With the optimal hyperparameters identified through Grid Search, the LSTM model achieves the 

following results: 

Table 4. Model Evaluation with Optimal Hyperparameters 

Metrics Training Testing 

RMSE 0,01 0,01 

MAE 0,01 0,01 

MAPE 3,55% 3,41% 

R² 0,9697 0,9518 

Accuracy 98,85% 97,59% 

 

Table 5. Additional Metrics with Optimal Hyperparameters 

Metrics Value 

Directional Accuracy 84,56% 

Maximum Drawdown 5,32% 

Sharpe Ratio 2,67 

 

The metrics show a substantial improvement in prediction performance with the optimized model. 

The testing R² of 0.9518 shows that the model explains almost 95.18% of the variation in stock price 

movements, indicating the model's ability to capture complex patterns in historical data. The test accuracy of 

97.59% indicates that the model is able to predict stock prices with a very high degree of accuracy, while the 

Directional Accuracy of 84.56% indicates that the model can predict the direction of stock price movements 

well. This is particularly important in stock trading applications, where understanding the direction of market 

movement is often more crucial than predicting its absolute value. In addition, the Maximum Drawdown of 

5.32% reflects the maximum risk faced during the test period, which is relatively low and indicates the stability 

of the model's predictions. The Sharpe Ratio of 2.67 indicates that the model provides a fairly high return-to-

risk ratio, which is an important indicator in assessing the performance of investment strategies based on 

prediction models. With these excellent evaluation metrics, the LSTM model optimized using Grid Search 

proved to be superior to the standard model. This improvement underscores the importance of proper 

hyperparameter selection in improving prediction accuracy and reliability. 

 

3.1.5. Comparative Analysis 

 

A comparative analysis of the two models shows a significant improvement in prediction performance 

with the LSTM optimized using Grid Search: The RMSE increased by 76.74% on the test data (from 0.043 to 

0.01).  The MAE increased by 70.59% on the test data (from 0.034 to 0.01). MAPE increased by 24.39% on 

the test data (from 4.51% to 3.41%). R² increased by 5.33% on the test data (from 0.9036 to 0.9518). The 

prediction accuracy increased by 2.20% on the test data (from 95.49% to 97.59%). 

 

 
Figure 2. Comparison Chart of training and test data of 

LSTM Model  

 

 
Figure 3. Comparison graph of training and test data LSTM model 

and Grid Search hyperparameter optimization 
 

3.2.  Discussion 

The results of this study show that hyperparameter optimization can systematically improve the 

performance of LSTM models in predicting stock prices significantly. The LSTM model optimized using Grid 
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Search consistently shows better results than the standard LSTM model in all evaluation metrics, especially in 

RMSE and MAE, which decreased by 76.74% and 70.59% respectively on the test data. This finding is in line 

with previous studies that emphasize the importance of hyperparameter tuning in deep learning models 

(Reimers & Gurevych, 2017; Bergstra & Bengio, 2012). The significant performance difference between the 

optimized and non-optimized models indicates that the LSTM network is very sensitive to the configuration of 

its hyperparameters, thus systematic optimization approaches such as Grid Search are very beneficial. 

Interestingly, the optimal configuration found by Grid Search uses a smaller number of LSTM units (50 units) 

than the standard model (100 units). This suggests that smaller networks can achieve better performance if 

their hyperparameters are set appropriately. This finding has practical implications in the application of the 

model, as smaller networks generally require less computational resources and are more suitable for real-time 

prediction scenarios. The optimized model achieved an R² value of 0.9518, which means that the model can 

explain about 95.18% of the variation in Africa Energy Corp's stock price movements. This high level of 

accuracy is particularly important given the high volatility of the stock market as well as the various external 

factors that can affect stock prices. The improvement in MAPE from 4.51% to 3.41% on the test data meant 

that there was an increase in prediction accuracy from 95.49% to 97.59%. While a 2.20% increase in percentage 

may seem small, it actually represents a significant reduction in error rate, which can have a great impact in 

practical stock trading applications. Although the results obtained are very promising, this study has some 

limitations. First, this study only uses technical indicators from historical price data without incorporating 

fundamental analysis or sentiment analysis from news and social media, which could potentially improve 

prediction accuracy. Secondly, although Grid Search allows comprehensive exploration of the hyperparameter 

space, it is quite computationally resource-intensive, so it may not be practical for models with very large 

hyperparameter spaces or deeper neural network architectures. 

 

4. CONCLUSION 

This research provides empirical evidence that the LSTM model optimized by Grid Search can 

significantly improve the accuracy of stock price prediction, with a case study on the stock of Africa Energy 

Corp. (AFE.V). The results show that hyperparameter optimization can systematically improve the 

performance of LSTM models in capturing complex patterns of stock price movements. The optimized LSTM 

model shows remarkable accuracy with RMSE of 0.01, MAE of 0.01, MAPE of 3.41%, and R² of 0.9518, 

which is a very significant improvement over the standard model. These results emphasize the importance of 

hyperparameter tuning in the development of deep learning models for financial data forecasting. Future 

research directions could include exploring more advanced hyperparameter optimization techniques such as 

Bayesian optimization or genetic algorithms, incorporating additional data sources such as news sentiment and 

macroeconomic indicators, as well as investigating the performance of hybrid models that combine LSTM with 

other machine learning approaches. The methodology and findings in this study contribute to the growing 

literature on the application of deep learning in finance and provide practical insights for researchers and 

practitioners who want to develop more accurate stock prediction models using LSTM networks. 
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