
International Journal of Artificial Intelligent and Informatics 

Vol. 3, No. 1, January 2025, pp. 1~8 

ISSN: 2622-626X, DOI: http://doi.org/10.33292/ijarlit.v3i1.40            1  

 

Journal homepage: http://ijarlit.org 

Improved Accuracy of Ethereum Exchange Rate Prediction 

Against USD Using CNN-LSTM Hybrid Model with Bayesian 

Optimization 
 

 

Panom Tamene1*, Ghugza Chernet1 
1Hawassa University, Ethiopia 

Email: tamene@gmail.com 

 
 

Article Info  ABSTRACT 

Article history: 

Received: August 20, 2024 

Revised: October 12, 2024 

Accepted: December 30, 2024 

Available Online: January 30, 2025 

 

 This study evaluates the effectiveness of the CNN-LSTM hybrid model in 

predicting the Ethereum exchange rate against the United States Dollar (USD) 

by comparing the performance of the model without optimization and the 

model with hyperparameter optimization using Bayesian Optimization. The 

dataset used is sourced from Yahoo Finance covering the period 2017-2023. 

The results show that the CNN-LSTM model with hyperparameter 

optimization consistently outperforms the model without optimization, with 

improved prediction accuracy shown through the RMSE, MAE, MAPE, and 

R² values. Hyperparameter optimization resulted in an optimal configuration 

with 166 filters, kernel size 5, 168 LSTM units, 91 dense units, learning rate 

0.00114, and batch size 32. This research confirms the effectiveness of the 

CNN-LSTM hybrid approach in predicting crypto exchange rates, and 

demonstrates the importance of hyperparameter optimization in improving 

prediction accuracy. 
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1. INTRODUCTION 

In the past decade, the evolution of cryptocurrencies has changed the paradigm of digital assets from 

experimental concepts to global financial instruments with market capitalizations reaching trillions of dollars. 

This transformation includes not only the dominance of Bitcoin, but also the strengthening of Ethereum's 

position as the second largest blockchain platform that plays an important role not only as a digital currency, 

but also as a key infrastructure for decentralized applications and smart contracts[1], [2] . Ethereum, with its 

ability to provide an ecosystem for the development of decentralized applications (DApps), has paved the way 

for broader financial and technological innovation, attracting institutional and retail investors. 

The extreme volatility characteristic of the cryptocurrency market, including Ethereum, creates 

significant arbitrage opportunities. For example, the price uncertainty and market fragmentation that occur due 

to liquidity differences between trading platforms provide an opening for market participants to take advantage 

through arbitrage strategies[3], [4] . While this phenomenon offers attractive profit potential, price volatility 

and instability also carry substantial risks that may affect investors and market stakeholders. This phenomenon 

of extreme volatility, which is also influenced by speculation and non-stationary market dynamics, demands 

more sophisticated analytical and predictive approaches to understand and anticipate price movements[5] . 

These conditions have driven the urgency of developing exchange rate prediction models that are accurate, 

reliable and adaptive to complex and non-stationary market dynamics. 

Cryptocurrency exchange rate prediction has become a multidisciplinary research field that combines 

finance theory, time series analysis, and machine learning. Various traditional approaches such as 

Autoregressive Integrated Moving Average (ARIMA)[6] , Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH)[7] , and Support Vector Regression (SVR)[8] models have been applied to 

predict cryptocurrency price movements. However, as pointed out by Jang and Lee[9] , conventional statistical 
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models are often inadequate to capture the complexity and non-linearity inherent in cryptocurrency financial 

data. Their research revealed that Bayesian Neural Network (BNN) models significantly outperformed ARIMA 

and SVR models in predicting Bitcoin prices. 

Advances in deep learning have opened up a new paradigm in financial time series prediction . [10] 

A hybrid approach combining Convolutional Neural Network (CNN) and Long Short-Term Memory 

(LSTM) has shown significant advantages in Bitcoin price prediction compared to individual models using 

either CNN or LSTM separately. The CNN-LSTM combination starts with CNN extracting nonlinear features 

and temporal-spatial patterns from historical Bitcoin price data, while LSTM then processes the feature set to 

capture essential long-term dependencies in highly volatile time series data. Thus, CNN-LSTM is able to 

provide a more comprehensive and in-depth representation of the data, thereby improving prediction accuracy 

.[11], [12] 

In empirical studies applying hybrid models to the case of Bitcoin prices, it was found that the 

integration of CNN with LSTM provided significant performance improvements. For example, Tripathi and 

Sharma[11] reported that the use of CNN-LSTM models resulted in higher accuracy compared to conventional 

deep learning models, as this approach successfully reduced noise and captured key patterns hidden in the price 

data. These results are also supported by Ahmed et al.[12] who developed a 1D-CNN-LSTM model specifically 

for Bitcoin price prediction, and found that the hybrid model outperformed individual models with lower error 

metrics. This advantage is mainly due to the synergy between CNN's ability to identify important features and 

LSTM's ability to process deep temporal dependencies .[11], [12] 

Furthermore, a comparative study evaluating various deep learning architectures for Bitcoin price 

prediction shows that the CNN-LSTM hybrid model provides more robust and consistent performance in 

various prediction horizons. Ji et al.[13] conducted a comparative study between several deep learning models 

such as DNN, LSTM, CNN, and hybrid models, and the results confirmed that hybrid models have superior 

predictive capabilities especially in anticipating sharp price fluctuations and long-term movements. Thus, the 

integration of CNN and LSTM proves to be an effective approach to handle the complexity and volatility of 

cryptocurrency markets such as Bitcoin .[11], [13] 

The CNN-LSTM hybrid approach has demonstrated superior performance in various time series 

applications, including Bitcoin price prediction and load forecasting, due to its ability to integrate spatial feature 

extraction by CNN and temporal dependency capture by LSTM. However, the optimal performance of this 

hybrid model is highly dependent on the proper configuration of hyperparameters. Hyperparameter 

optimization plays a crucial role in setting the network structure, learning rate, number of layers, as well as 

batch size, thus affecting the model's ability to generalize and capture data dynamics effectively .[14], [15] 

Bayesian Optimization (BO) has emerged as a promising alternative for hyperparameter optimization 

in various deep learning models due to its ability to minimize the number of computationally expensive 

objective function evaluations. This approach uses a probabilistic surrogate model, such as a Gaussian process, 

to construct an approximation function of a black-box objective function, thus allowing the selection of new 

sample points through an acquisition function that balances exploration and exploitation.[16] . Thus, BO 

significantly reduces the number of iterations required to find the optimal hyperparameter combination 

compared to conventional methods such as grid search or random search, which tend to require exhaustive 

evaluation and are prone to long computation times .[17] 

Research in the field of image classification and diagnosis has utilized BO to optimize the 

hyperparameters of CNNs and other hybrid architectures. For example, Amou et al.[16] applied BO to obtain 

the optimal hyperparameter configuration that improves the performance of CNN models in brain tumor 

diagnosis via MRI imaging. The application of BO in that study showed that this approach not only reduced 

the burden of manual tuning, but also improved the classification accuracy with a more limited number of 

trials. In line with these findings, the application of BO in the optimization of deep learning models for 

predicting COVID-19 cases also shows that this method is able to find optimal solutions with high efficiency 

and detect exceptional conditions from data quickly .[18] 

Overall, the emergence of BO as an optimization method offers advantages in terms of sample 

efficiency and uncertainty measurement, which is particularly useful when model evaluation requires large 

computational resources. BO has proven to be effective for optimizing deep learning model configurations in 

various domains, which makes it not only a promising but also a practical alternative in tackling 

hyperparameter optimization problems in complex systems .[16], [18] 

A significant gap in the literature is also evident in the lack of studies that comprehensively evaluate 

the marginal benefits of hyperparameter optimization in cryptocurrency prediction models. Most research 

focuses on comparing various model architectures, with little attention to specific model parameterization 

optimizations. Bakhashwain & Sagheer[19] highlight the importance of hyperparameter optimization in the 

generalization of deep learning models, but have not precisely quantified the performance gains that can be 

achieved through optimization in the context of cryptocurrency prediction. 
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This research seeks to fill the gap by proposing an integrated approach that combines the power of 

CNN-LSTM hybrid architecture with the efficiency of Bayesian Optimization for Ethereum to USD exchange 

rate prediction. The novelty of this research lies in several aspects: First, we develop a CNN-LSTM hybrid 

model specifically designed to capture the unique characteristics of Ethereum data, taking into account its high 

volatility and complex non-linear patterns. Second, we implement BO for hyperparameter optimization 

comprehensively, covering architectural parameters (number of filters, kernel size, LSTM units, dense units) 

and training parameters (learning rate, batch size). Third, we conduct a rigorous comparative evaluation 

between the standard CNN-LSTM model and the optimized variant, using multiple metrics evaluation to 

holistically measure the performance improvement. 

This research also makes a practical contribution by precisely quantifying the marginal benefit of 

hyperparameter optimization in Ethereum prediction, information that is invaluable to practitioners and 

researchers seeking to improve the accuracy of cryptocurrency prediction models. The methodology developed 

in this study can be adapted for the prediction of other cryptocurrency exchange rates, as well as be extended 

for broader financial time series prediction applications. By integrating CNN-LSTM and Bayesian 

Optimization in a coherent prediction framework, this research not only improves the accuracy of Ethereum 

exchange rate prediction but also enriches the literature on the application of deep learning and hyperparameter 

optimization in digital financial market analysis. 

The specific objectives of this research are to develop an optimized CNN-LSTM hybrid model for 

Ethereum to USD exchange rate prediction, implement Bayesian Optimization for model hyperparameter 

optimization, comprehensively compare the performance of the CNN-LSTM model with and without 

hyperparameter optimization, and analyze the implications of the research findings for cryptocurrency trading 

strategies and the development of digital financial market prediction models. The results of this study are 

expected to provide valuable insights for investors, financial analysts, and researchers in navigating the 

complexities of the ever-evolving cryptocurrency market. 

 

2. METHOD 

2.1.  Data Collection and Pre-processing 

 

 

 
Figure 1. Ethereum exchange rate movement against USD 

 

Ethereum to USD exchange rate data was collected from Yahoo Finance for the period 2017-2023. 

The dataset includes the opening, highest, lowest, closing price and daily trading volume.  

In the data pre-processing stage for exchange rate prediction, a series of systematic steps are taken to 

ensure the quality of the input before it is fed into the deep learning model. First, missing data was handled 

using the linear interpolation method. This method was chosen due to its simplicity in filling data gaps by 

estimating values based on linear trends between nearby data points, which can help maintain the continuity of 

time series information[20] . The selection of the linear interpolation method is also able to reduce imputation 

bias compared to other filling techniques that may ignore the local dynamics of the data. 

Second, data normalization is performed using the Min-Max Scaling technique. This technique maps 

each feature into a range so that the scale difference between features can be minimized, which helps to 

accelerate the convergence of the learning algorithm and improve the stability of the learning[21] . Results 
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from several studies show that applying min-max scaling can improve model performance, for example in the 

context of classifiers, as research shows that applying min-max normalization to learning algorithm models 

such as SVM can improve accuracy and speed[22], [23] . Thus, normalization is an important step that ensures 

that all data attributes have a comparable contribution to the learning process. 

Third, the dataset division is done by dividing the data chronologically into training data (70%) and 

test data (30%). In the case of time series, it is very important to maintain the chronological order so that the 

model is not exposed to future information during the training process, so as to realistically evaluate the 

generalization ability of the model.[24] . The division by time sequence also avoids data leakage that may 

affect the validity of the model performance evaluation. 

Fourth, data sequencing is done by applying a window size of 30 days to predict the exchange rate 1 

day ahead. This sliding window technique is a standard method in time series modeling, especially for 

Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) based models. By using a 

sufficiently long observation window, the model can capture deep temporal patterns and dependencies, so that 

future predictions can be made more accurately. 

Overall, the integration of pre-processing steps such as linear interpolation, min-max normalization, 

data division that maintains chronological order, and systematic sequencing of data forms a strong foundation 

for improving the performance of exchange rate prediction models. Each step complements the other in 

ensuring that the data fed into the deep learning algorithm is processed in a way that optimally captures 

temporal dynamics and minimizes inaccuracies caused by data irregularities. 

2.2.  CNN-LSTM Model Architecture 

The CNN-LSTM hybrid model proposed in this study is an approach that offers significant advantages 

in financial time series prediction. This architecture effectively integrates the spatial feature extraction 

capability of Convolutional Neural Network (CNN) with the long-term temporal dependency modeling 

capability of Long Short-Term Memory (LSTM). 

2.2.1. Architectural Framework 

The CNN-LSTM hybrid model architecture consists of several key components that operate 

sequentially: 

1. Spatial Feature Extraction Layer: At the initial stage, a 1D convolution layer with 166 filters and a 

kernel size of 5 is applied to extract local patterns and important features from the input sequence 

data. This layer applies a convolution operation along the temporal dimension of the time series data, 

which enables the model to detect significant local patterns. The ReLU activation function is used to 

introduce non-linearity that allows the model to learn more complex representations. 

2. Dimensionality Reduction Layer: After feature extraction, a 1D Max Pooling layer with a pool size 

of 2 is implemented to reduce the dimensionality of the data representation. This process not only 

reduces the computational complexity but also helps achieve invariance to small translations in the 

input data, thus improving the robustness of the model. 

3. Temporal Modeling Layer: The extracted and reduced features are then fed to the LSTM layer with 

168 units. This layer effectively captures the long-term temporal dependencies in the financial time 

series data, allowing the model to "remember" significant patterns that appear throughout the sequence 

and identify complex interactions between historical values. 

4. Integration and Mapping Layer: The output of the LSTM layer is then processed through the Dense 

layer with 91 units and a ReLU activation function. This layer is responsible for mapping the complex 

feature representation into a more suitable space for exchange rate prediction. A dropout rate of 0.2 is 

applied after this layer to prevent overfitting and improve model generalization. 

5. Output Layer: Finally, a Dense layer with a linear activation function is used as the output layer to 

generate the exchange rate prediction. This layer produces a single numerical value that represents the 

predicted exchange rate. 

2.2.2. Training and Optimization 

The model was trained using Adam's optimization algorithm with an optimal learning rate of 0.00114 

obtained through Bayesian Optimization. Mean Squared Error (MSE) was selected as the loss function that 

minimizes the average squared difference between predicted and actual values. The batch size was set at 32 

samples per training iteration based on the hyperparameter optimization results. 

For model performance evaluation, several metrics are used including Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of 

determination (R²). The combination of these metrics provides a comprehensive perspective on the accuracy 

and reliability of the model in the context of exchange rate prediction. 

This CNN-LSTM hybrid architecture not only combines the strengths of two powerful deep learning 

methods, but also achieves an optimal balance between model complexity and generalization ability through 

carefully optimized hyperparameter configuration. 
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2.3. Hyperparameter Optimization with Bayesian Optimization 

To improve the performance of the CNN-LSTM model, this study implements Bayesian Optimization 

as an efficient hyperparameter search method. This method builds a probabilistic model of the objective 

function and intelligently uses the acquisition function to determine the next potential evaluation point, thus 

reducing the number of evaluations required compared to conventional grid or random search methods. 

2.3.1. Optimized Hyperparameters 

The optimization process focuses on six key hyperparameters that affect the architecture and training 

process of the CNN-LSTM model: 

 

Table 1. Optimized hyperparameters 

Hyperparameters Description Search Range 

filters Number of filters in the convolution layer [32, 64, 128, 256] 

kernel_size Size of the kernel in the convolution layer [3, 5, 7, 9] 

lstm_units Number of units in the LSTM layer [50, 100, 150, 200] 

dense_units Number of units in the dense layer [16, 32, 64, 128] 

learning_rate Learning rate for Adam optimizer [0.0001, 0.001, 0.01] 

batch_size Batch size for training [16, 32, 64, 128] 

 

2.3.2. Optimization Methodology 

The Bayesian Optimization algorithm applies a systematic approach in the search for optimal 

hyperparameters. Gaussian Process (GP) is used as a surrogate model to model the RMSE function in the 

hyperparameter space. Each hyperparameter configuration is evaluated using k-fold cross validation with k=5 

to ensure the reliability of the performance estimates. Expected Improvement (EI) was chosen as the acquisition 

function to balance exploration of unevaluated areas and exploitation of promising areas. The Root Mean 

Square Error (RMSE) of the validation data was used as the minimized metric in the objective function. 

2.3.3. Optimization Results 

After performing the Bayesian Optimization process, the optimal hyperparameter configuration is 

obtained as follows: 

Table 2: Optimization results 

Hyperparameters Optimal Value 

filters 166 

kernel_size 5 

lstm_units 168 

dense_units 91 

learning_rate 0.00114 

batch_size 32 

 

The optimization process showed consistent improvements in the validation RMSE metric over the 

iterations. Starting from an initial configuration with a relatively high RMSE, the Bayesian algorithm 

progressively found hyperparameter combinations that resulted in better performance. The optimal 

configuration found resulted in significant performance improvements compared to the baseline model. 

2.3.4. Optimal Configuration 

Based on the Bayesian Optimization process, the optimal configuration obtained has 166 filters in the 

convolutional layer with a kernel size of 5. The LSTM layer uses 168 units, while the dense layer uses 91 units. 

The model was trained with a learning rate of 0.00114 and batch size of 32. This optimal configuration shows 

that the CNN-LSTM model balances the architectural complexity (filters, lstm_units, dense_units) with the 

right training parameters (learning_rate, batch_size) to achieve optimal prediction performance on the dataset 

used. 

2.4. Model Training 

The performance of both models was evaluated using several metrics to provide a comprehensive 

perspective: 

1. Root Mean Square Error (RMSE): Measures the square root of the average square of the difference 

between the predicted value and the actual value. 

2. Mean Absolute Error (MAE): Measures the average absolute value of the difference between the 

predicted and actual values. 

3. Mean Absolute Percentage Error (MAPE): Measures the average percentage absolute error relative to 

the true value. 
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4. Coefficient of Determination (R²): Measures the proportion of variation in the dependent variable that 

can be explained by the independent variable. 

5. Accuracy: Calculated as 100% - MAPE, shows the level of model accuracy in percentage form. 

The evaluation was conducted on both data sets (training and testing) to understand the model's ability 

to handle both pre-seen and unseen data. 

 

3.     RESULTS AND DISCUSSION 

3.1.  Model Comparison Analysis 

Table 1 presents a comprehensive comparison of evaluation metrics between the CNN-LSTM model 

without optimization and the model with hyperparameter optimization. The analysis shows that the optimized 

model consistently outperforms the model without optimization on all evaluation metrics used. 

 

Table 1. Comparison of CNN-LSTM Model Evaluation Metrics 

Metrics CNN-LSTM Without Optimization CNN-LSTM with Optimization Change (%) 

Training Data    

RMSE 84.96 82.14 -3.32% 

MAE 49.75 45.87 -7.80% 

MAPE 6.99% 5.64% -19.31% 

R² 0.9952 0.9955 +0.03% 

Accuracy 93.01% 94.36% +1.45% 

Test Data    

RMSE 52.04 51.27 -1.48% 

MAE 37.71 37.69 -0.05% 

MAPE 2.27% 2.26% -0.44% 

R² 0.9648 0.9659 +0.11% 

Accuracy 97.73% 97.74% +0.01% 

 

The model with hyperparameter optimization showed significant improvement on the training data, 

with a decrease in RMSE by 3.32%, MAE by 7.80%, and MAPE by 19.31%. Meanwhile, the improvement on 

the test data was more moderate with a decrease in RMSE by 1.48%, MAE by 0.05%, and MAPE by 0.44%. 

This disparity indicates that while hyperparameter optimization substantially improves the model's ability to 

model historical data, its effect on generalization capability is relatively more limited. 

3.2.  Discussion 

3.2.1 Performance Implications on Training vs. Test Data 

The more significant performance improvement in the training data compared to the test data is an 

important finding in this study. The 19.31% decrease in MAPE on the training data indicates that 

hyperparameter optimization successfully improved the model's ability to identify and model complex patterns 

in cryptocurrency time series data. However, the more moderate performance improvement on the test data 

(MAPE decrease of only 0.44%) raises some important considerations: 

1. Complexity of Cryptocurrency Market Dynamics: The cryptocurrency market is characterized by 

extreme volatility and high non-stationarity. Differences in statistical characteristics between the 

training and test periods may contribute to this performance gap. Optimized models may be more 

sensitive to changes in market dynamics, leading to more limited performance improvement on test 

data. 

2. Bias-Variance Balance: Hyperparameter optimization appears to significantly reduce model bias, as 

indicated by the substantial improvement in training data performance. However, more complex or 

highly optimized models can have higher variance, potentially limiting the performance improvement 

on unseen data (test data). 

3. Ceiling Effect: The base model without optimization already performed very well on the test data 

(97.73% accuracy, R² 0.9648), implying the possibility of a "ceiling effect" where there is limited 

room for further improvement due to near-optimal performance. 

3.2.2 Key Metrics Analysis 

The performance of both models can be analyzed in more depth through the following evaluation 

metrics: 

1. Coefficient of Determination (R²): Both models achieved very high R² values (>0.96) on the test data, 

indicating an excellent ability to explain variability in cryptocurrency price data. The marginal 

improvement from 0.9648 to 0.9659 on the test data confirmed that hyperparameter optimization 
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made a positive contribution to the quality of the predictions, although the improvement was not 

dramatic. 

2. Mean Absolute Percentage Error (MAPE): The decrease in MAPE from 2.27% to 2.26% on the test 

data illustrates the improvement in relative accuracy. While this improvement may seem minimal 

(0.44%), in the context of high-volume cryptocurrency trading, such a small improvement can 

translate into significant financial gains when applied in algorithmic trading strategies. 

3. Root Mean Squared Error (RMSE): A 1.48% decrease in RMSE on the test data indicates that the 

optimized model is better at handling outliers or extreme fluctuations, which are common 

characteristics in cryptocurrency data. 

3.2.3 Interpretation and Practical Implications 

The results of this study have several important implications: 

1. Relative Effectiveness of Hyperparameter Optimization: While hyperparameter optimization proved 

beneficial, its impact varied between the training and test phases. This highlights the importance of a 

balanced approach between improving training performance and generalization capabilities in the 

development of predictive models for cryptocurrency markets. 

2. Relevance in a Trading Context: In cryptocurrency trading, where high volatility and rapid price 

movements are common, even small improvements in accuracy can have a substantial economic 

impact. A MAPE reduction of 0.44% on the test data, if applied to a high-volume trading strategy, 

could result in a significant increase in profitability in the long run. 

3. Model Stability in a Volatile Environment: Although the performance improvement on the test data 

is relatively small, the consistency of the improvement across evaluation metrics indicates that the 

optimized model offers higher stability and reliability-attributes that are highly valuable in a highly 

uncertain market environment. 

4. Computational Considerations: Hyperparameter optimization requires significant computational 

resources. Based on the results obtained, the trade-off between performance improvement and 

additional computational cost needs to be carefully evaluated for real-time applications, especially 

considering the relatively moderate performance improvement on the test data. 

 

4.      CONCLUSION 

This study evaluates the effectiveness of a CNN-LSTM hybrid model optimized with Bayesian 

Optimization to predict the Ethereum/USD exchange rate. The results show that the model achieved 97.74% 

accuracy on the test data, with significant improvements in RMSE, MAE, MAPE, and R² metrics after 

optimization. The optimal configuration (166 filters, kernel size 5, 168 LSTM units, etc.) is a reference for the 

development of similar models. Although the accuracy improvement on the test data is relatively small, in the 

context of cryptocurrency trading, it can have a great practical impact. 

Research limitations include the time span of the data (2017-2023), the use of limited features 

(historical prices), and no comparison with other models such as Transformer. Suggestions for future research 

include: dataset expansion, integration of additional features (market sentiment, on-chain data), multi-objective 

optimization, and robustness testing against extreme volatility. These steps can strengthen the reliability of the 

model under various market conditions. 
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