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 This research compares the effectiveness of the hybrid Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) method and the 

Convolutional Neural Network (CNN) method in predicting the Ethereum 

(ETH) exchange rate against the United States Dollar (USD). The research 

uses historical ETH/USD data from Yahoo Finance for the period 2017-2022. 

Evaluation of the two models was carried out using the performance metrics 

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), coefficient of determination (R²), and 

accuracy rate. The results showed that the CNN-LSTM hybrid model 

significantly outperformed the CNN model in predicting the ETH/USD 

exchange rate with a Test RMSE value of 94.67 compared to 129.02 for CNN, 

as well as an accuracy rate of 96.31% versus 94.89%. These findings 

contribute to the fintech literature by providing empirical evidence of the 

superiority of hybrid methods for high volatility cryptocurrency exchange rate 

prediction. 
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1. INTRODUCTION 

The emergence of cryptocurrencies as an alternative asset class has caught the attention of investors, 

academics, and financial practitioners around the world. Ethereum (ETH), as the second largest cryptocurrency 

after Bitcoin by market capitalization, has become a significant focus in the decentralized finance ecosystem. 

The high price volatility of ETH and other cryptocurrencies creates both exciting trading opportunities and risk 

management challenges[1] . Therefore, accurate ETH/USD exchange rate predictions are crucial for market 

participants. 

Developments in artificial intelligence and machine learning technologies have enabled new 

approaches in predicting financial asset prices. Deep learning, in particular, has shown excellence in processing 

and modeling complex financial time series data[2] . Among various deep learning architectures, Convolutional 

Neural Network (CNN) and Long Short-Term Memory (LSTM) have gained popularity for their ability to 

capture spatial and temporal patterns in data .[3] 

CNN is known for its ability to extract important features from input data through convolution 

operations, which enables pattern recognition in time series data[4] . On the other hand, LSTM, as a variant of 

Recurrent Neural Network (RNN), is specifically designed to handle long-term dependency problems in 

sequential data with a gating mechanism that allows selective storage and retrieval of information[5] . The 

combination of these two architectures in a CNN-LSTM hybrid model is expected to utilize the advantages of 

each approach .[2] 

Previous research on the use of Convolutional Neural Network (CNN) and CNN-Long Short-Term 

Memory (LSTM) hybrid models for forecasting has consistently demonstrated the effectiveness of these two 

approaches in predicting various phenomena, including power consumption and environmental parameters. 

Yan et al.[6] proposed a CNN-LSTM hybrid strategy for short-term energy consumption forecasting by 
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comparing it against traditional models such as ARIMA and LSTM. Their results revealed the superiority of 

the hybrid model in evaluation metrics such as RMSE and MAE, indicating its superior ability to capture 

temporal patterns and nonlinear relationships. This finding confirms the importance of the combination of CNN 

and LSTM in comprehensively extracting data features to produce more accurate predictions. Furthermore, 

Shao et al.[7] developed an innovative approach where CNN and LSTM work in parallel to extract features, 

thus preserving the original data information more fully. This method was shown to provide a significant 

increase in accuracy over traditional models, suggesting that the integration of features from both neural 

network architectures can substantially improve forecasting capabilities. 

Applications of the CNN-LSTM hybrid model have been successfully implemented in various 

domains. Khan et al.[8] demonstrated the effectiveness of this model in predicting energy consumption in 

residential and commercial buildings using smart meter data, which contributed to more efficient energy 

management. Meanwhile, Zain and Alturki[9] applied a similar model for forecasting COVID-19 cases, where 

their hybrid model outperformed other baseline models when evaluated using metrics such as MAPE and 

RMSE. These results not only confirm the effectiveness of the hybrid approach in different contexts, but also 

highlight the flexibility and robustness of this method.  

A recent development in hybrid model optimization was demonstrated by Shi et al.[10] who integrated 

an attention mechanism for more efficient feature selection, resulting in markedly improved performance in 

short-term energy load forecasting. Collectively, these studies prove that the CNN-LSTM hybrid model 

consistently delivers superior results in terms of both accuracy and efficiency compared to traditional models, 

with its distinctive ability to capture complex temporal structures and process data in an integrated manner 

being a critical success factor in various forecasting applications. 

Although previous research has demonstrated the potential of deep learning methods in crypto price 

prediction[11], [12] , in-depth comparative studies on the effectiveness of hybrid CNN-LSTM methods 

compared to pure CNN in the context of ETH/USD exchange rate prediction are limited. This research aims to 

fill that gap by conducting a comprehensive comparative analysis between the two approaches. 

This research aims to develop and evaluate a deep learning-based approach to predicting ETH/USD 

exchange rate movements. Specifically, this study is designed to: (1) build and test a hybrid CNN-LSTM model 

that combines the spatial feature extraction capability of Convolutional Neural Network with the temporal 

dependency modeling capacity of Long Short-Term Memory; (2) develop and evaluate a standalone CNN 

model as a baseline to understand the contribution of the convolutional component in isolation; (3) conduct a 

rigorous comparative analysis between the two architectures using a comprehensive set of evaluation metrics 

to measure various aspects of predictive performance; and (4) determine the most effective approach in the 

context of crypto exchange rate prediction through systematic interpretation of experimental results. As such, 

this research not only contributes to the development of more accurate predictive models for crypto markets, 

but also provides empirical insights into the relative effectiveness of hybrid approaches versus single-modality 

architectures in the financial forecasting domain. 

This research contributes to the literature in several aspects. First, we provide empirical evidence on 

the relative advantages of the CNN-LSTM hybrid method compared to CNN in the context of crypto exchange 

rate prediction. Second, our findings expand knowledge on the application of deep learning techniques in 

crypto market analysis. Third, we develop a methodological framework that can be applied to other 

cryptocurrency exchange rate predictions. 

The structure of this paper is organized as follows: The next section describes the research 

methodology, including data collection, pre-processing, model architecture, and evaluation criteria. Then, we 

present the empirical results and discussion. Finally, we conclude the study with a summary of findings, 

implications, and suggestions for future research. 

 

 

 

2. METHOD 

2.1.  Data and Data Sources 

This study uses historical data of the daily exchange rate of Ethereum (ETH) against the United States 

Dollar (USD) from the period 2017 to 2022 obtained from Yahoo Finance. The dataset includes the open, high, 

low, close and trading volume prices. This time period was chosen to cover several crypto market cycles, 

including the 2017-2018 bull market, the 2018-2020 bear market, and the 2020-2021 bull market, allowing the 

model to learn from various market conditions 
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Figure 1. Ethereum exchange rate movement against USD 

 

. 

2.2.  Data Pre-processing 

Data preprocessing is an important step in preparing raw data for model training and testing, especially 

in machine learning and deep learning applications. This process involves several systematic approaches, from 

handling missing data, normalizing values, to compiling data sets for training models. 

To handle missing data, a robust method involves the use of linear interpolation. This technique 

identifies empty values and fills them in based on the surrounding data points, thus maintaining the temporal 

continuity of the dataset. Linear interpolation is widely recognized for its simplicity and effectiveness in 

maintaining existing trends in sequential data[13]–[15] . Using this method not only helps in improving data 

quality but also reduces the potential bias that can arise from discarding incomplete records[16] . In particular, 

research shows that for temporal gaps, linear interpolation is generally effective, although it can smooth out 

high frequency variations in the data .[17] 

After handling missing values, normalization is essential to ensure that the model accurately learns 

the underlying pattern. The Min-Max Scaler is often used for this purpose, scaling the data to a specific 

range[13], [18] , which significantly helps speed up the convergence of neural network models[19], [20] . This 

method ensures that each feature contributes equally to the distance calculations that underpin most machine 

learning algorithms, thus improving their performance .[21] 

After preprocessing, the dataset is organized into two main subsets: training (usually about 80% of 

the data) and testing (20%). This division is essential to evaluate the predictive ability of the developed model 

without overfitting the training data.[21] . The training data undergoes detailed preparation, where sequences 

are created to give the model a temporal context. Each input sample consists of a sequence of values over a 

period of, 30 days enabling the model to effectively learn both short-term and medium-term trends[22], [23] . 

The establishment of such sequences is essential for models such as artificial neural networks, enhancing their 

ability to utilize historical data in making predictions .[24] 

 

2.3.  Model Architecture  

2.3.1.   CNN Model 

 

Table 1. CNN Model Architecture Configuration 

Layer (Type) Output Shape Number of Parameters 

conv1d_1 (Conv1D) (None, 60, 128) 768 

max_pooling1d_1(MaxPooling1D) (None, 60, 128) 0 

flatten_1 (Flatten) (None, 7680) 0 

dense_2 (Dense) (None, 50) 384,050 

dense_3 (Dense) (None, 1) 51 
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The developed CNN model has the following architecture: 

1. Input Layer: Input shape (30, 5) - represents 30 consecutive days with 5 features (open, high, low, 

close, volume) 

2. Convolution Layer: 

• First Conv1D with 64 filters, kernel size 3, and ReLU activation function 

• Batch Normalization to stabilize the training 

• MaxPooling1D with pool size 2 to reduce dimensions 

• Dropout 0.2 to prevent overfitting 

3. Second Convolution Layer: 

• The second Conv1D with 128 filters, kernel size 3, and ReLU activation function 

• Batch Normalization 

• MaxPooling1D with pool size 2 

• Dropout 0.2 

4. Layer Flatten: To convert the convolution output into a one-dimensional vector 

5. Dense Layer: 

• First dense layer with 64 units and ReLU activation function 

• Dropout 0.3 

• Second dense layer with 32 units and ReLU activation function 

• Dense layer output with 1 unit (for price prediction) 

2.3.2.  CNN-LSTM Hybrid Model 

 

Table 2. Configuration of CNN-LSTM Hybrid Model Architecture 
Layer (Type) Output Shape Number of Parameters 

conv1d_17 (Conv1D) (None, 60, 128) 768 

max_pooling1d_17 (MaxPooling1D) (None, 60, 128) 0 

lstm_27 (LSTM) (None, 50) 35,800 

dense_34 (Dense) (None, 25) 1,275 

dense_35 (Dense) (None, 1) 26 

 

The CNN-LSTM hybrid model combines the advantages of CNN in extracting features with the ability of 

LSTM in processing sequential information: 

1. Input Layer: Input shape (30, 5) - same as CNN model 

2. Convolution Layer: 

• Conv1D with 64 filters, kernel size 3, and ReLU activation function 

• Batch Normalization 

• MaxPooling1D with pool size 2 

• Dropout 0.2 

3. Layer LSTM: 

• First LSTM with 100 units and return_sequences=True to maintain sequential output 

• Dropout 0.2 

• Second LSTM with 50 units 

• Dropout 0.2 

4. Dense Layer: 

• Dense layer with 32 units and ReLU activation function 

• Dense output layer with 1 unit 

2.3. Model Training 

Both models were trained with the following configuration: 

1. Optimizer: Adam with learning rate 0.001 

2. Loss Function: Mean Squared Error (MSE) 

3. Batch Size: 32 

4. Epochs: 100 with Early Stopping implementation (patience=20) to prevent overfitting 

5. Validation Split: 20% of the training data is used as validation set 

2.4. Model Evaluation 

The performance of both models was evaluated using several metrics to provide a comprehensive 

perspective: 

1. Root Mean Square Error (RMSE): Measures the square root of the average square of the difference 

between the predicted value and the actual value. 
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2. Mean Absolute Error (MAE): Measures the average absolute value of the difference between the 

predicted and actual values. 

3. Mean Absolute Percentage Error (MAPE): Measures the average percentage absolute error relative to 

the true value. 

4. Coefficient of Determination (R²): Measures the proportion of variation in the dependent variable that 

can be explained by the independent variable. 

5. Accuracy: Calculated as 100% - MAPE, shows the level of model accuracy in percentage form. 

 

3.     RESULTS AND DISCUSSION 

3.1.  Model Performance 

The evaluation results of both models on the training and testing datasets are presented in Table 3. 

 

Table 3. Comparison of CNN-LSTM and CNN Model Performance 

Metrics CNN-LSTM Train CNN-LSTM Test CNN Train CNN Test 

RMSE 84.38 94.67 100.77 129.02 

MAE 44.36 70.25 47.20 98.38 

MAPE 6.33% 3.69% 4.86% 5.11% 

R² 0.9950 0.9850 0.9929 0.9722 

Accuracy 93.67% 96.31% 95.14% 94.89% 

     

Based on the evaluation results, the CNN-LSTM hybrid model shows superior performance compared 

to the pure CNN model on the test dataset. In particular, the CNN-LSTM hybrid model achieves a much lower 

RMSE value (94.67) compared to the CNN model (129.02), indicating that the prediction of the hybrid model 

is closer to the true value. Similarly, the lower MAE (70.25 vs 98.38) on the test data reinforces the superiority 

of the hybrid model in terms of prediction precision. 

The CNN-LSTM hybrid model also shows a lower MAPE on the test dataset (3.69% compared to 

5.11% for CNN), which translates to higher accuracy (96.31% vs. 94.89%). In addition, the higher R² value 

(0.9850 vs. 0.9722) indicates that the hybrid model can explain a larger proportion of ETH/USD price variation. 

3.2.  Model Performance Analysis 

3.2.1. Model Stability 

The CNN-LSTM hybrid model shows a smaller gap between training and testing performance metrics. 

For example, the RMSE difference between training and testing for the hybrid model is 10.29 (94.67 - 84.38), 

while for the CNN model it is 28.25 (129.02 - 100.77). This shows that the hybrid model has better 

generalization ability and tends to be more stable when facing new data. 

Interestingly, the CNN-LSTM hybrid model showed an increase in accuracy from training data 

(93.67%) to testing data (96.31%), while the CNN model experienced a slight decrease in accuracy (95.14% 

to 94.89%). This phenomenon can be explained by the characteristics of the hybrid model which is able to 

adapt better to new data patterns, especially in the context of complex and non-stationary financial time series 

data such as the ETH/USD exchange rate. 

3.2.2. Temporal Pattern Capture Ability 

The CNN-LSTM hybrid model shows superiority in capturing short-term and long-term temporal 

patterns in ETH/USD exchange rate data. The CNN component in the hybrid model successfully extracts 

important features from the input data, while the LSTM component is able to capture long-term dependencies 

and temporal relationships in the data. 

This is reflected in the high R² value (0.9850) of the test data, which shows that the hybrid model can 

explain 98.50% of the variation in the ETH/USD exchange rate. In contrast, the pure CNN model, while still 

performing well with an R² of 0.9722, cannot capture complex temporal patterns as well as the hybrid model. 

3.2.3. Prediction Accuracy in High Volatility Periods 

To further analyze the ability of both models to handle market volatility, we identified periods of high 

volatility in the test data and evaluated the performance of the models specifically in those periods. High 

volatility periods are defined as time intervals where the standard deviation of the ETH/USD price within a 7-

day window exceeds the 75th percentile of the entire standard deviation distribution. 

In periods of high volatility, the CNN-LSTM hybrid model still shows superior performance with a 

MAPE of 4.82% compared to 7.23% for the CNN model. This shows that the hybrid model is more resilient 

in the face of volatile market conditions, which is an important characteristic for practical applications in crypto 

trading. 

3.3.  Visualization of Prediction Results 
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To provide a clearer understanding of the performance of the two hybrid CNN-LSTM models, we 

present a visualization of the ETH/USD exchange rate prediction for the test period in Figure 2. 

 

 
Figure 2. Comparison of actual and predicted values of the ETH/USD exchange rate in the testing period of 

the CNN-LSTM model 

 

 
Figure 3. Comparison of actual and predicted values of the ETH/USD exchange rate in the CNN model 

testing period 

 

This visualization shows that the CNN-LSTM hybrid model produces predictions that are closer to 

the actual values compared to the CNN model, especially during periods of significant price fluctuations. The 

hybrid model is also better at capturing turning points in the data, which is an important aspect of trading 

decision-making. 

3.4.  Practical Implications 

The results of this study provide several significant practical implications for the crypto market, 

particularly in trading the ETH/USD pair. Firstly, the developed hybrid CNN-LSTM model, with an accuracy 

of 96.31% and RMSE of 94.67, offers a strong foundation for the development of more effective trading 

strategies. The model's ability to capture complex temporal patterns allows traders to identify trading 

opportunities with higher precision. Secondly, from a risk management perspective, the model's accurate 

predictions provide a more reliable estimate of ETH/USD price movements, thereby facilitating the 

determination of more optimal stop-loss and take-profit levels. Thirdly, in the context of portfolio management, 
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the predictive information generated by the model can be an important consideration in the asset allocation and 

diversification process, allowing investors to make more informed decisions based on projected price 

movements. Finally, the model has great potential to be integrated into automated trading systems, where high 

accuracy and low error can significantly improve profitability through reliable predictive signal-based 

transaction execution. These findings collectively offer substantial applicative value to various stakeholders in 

the crypto market. 

 

 

4.      CONCLUSION 

This study compares the performance of a hybrid CNN-LSTM model and a pure CNN model in 

predicting the Ethereum (ETH) to US Dollar (USD) exchange rate using historical data from 2017 to 2022. 

The evaluation results show that the CNN-LSTM hybrid model consistently outperforms the CNN model in 

various performance metrics, including RMSE, MAE, MAPE, R², and accuracy. The CNN-LSTM hybrid 

model showed significant advantages in generalization ability, stability, and the ability to capture complex 

temporal patterns in ETH/USD exchange rate data. In particular, the hybrid model achieved 96.31% accuracy 

on the test data, compared to 94.89% for the CNN model. In addition, the hybrid model is more resilient in the 

face of periods of high volatility, which is an important characteristic for practical applications in crypto 

trading. The superiority of the CNN-LSTM hybrid model can be explained by the synergy between the CNN 

component, which is effective in extracting important features from the input data, and the LSTM component, 

which is able to capture long-term dependencies and temporal relationships in the data. This combination 

results in a more comprehensive and adaptive model to the complex dynamics of the crypto market. The 

practical implications of this research include the development of more effective trading strategies, better risk 

management, more optimal portfolio diversification, and the development of more sophisticated automated 

trading systems. However, this study also recognizes limitations such as not considering external factors and 

focusing on short-term predictions. Future research can extend this study by integrating sentiment analysis and 

news data, expanding the prediction horizon, exploring more advanced data transformation techniques, 

conducting more comprehensive model robustness testing, and exploring alternative model architectures such 

as CNN-GRU or Transformer. Overall, the results of this study provide strong empirical evidence that hybrid 

approaches in deep learning, specifically the CNN-LSTM combination, offer a promising solution for 

cryptocurrency exchange rate prediction. The findings contribute to the fintech and machine learning literature 

by providing a framework that can be used for the development of more accurate prediction models for various 

financial applications. 
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