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 This study compares the performance of the Long Short-Term Memory 

(LSTM) model without optimization and LSTM with Grid Search 

optimization in predicting Saudi Arabian Oil Company (Aramco) stock 

prices. Using stock price data from December 2019 to December 2023, this 

study aims to identify a more accurate prediction model. Results show that the 

LSTM model with Grid Search optimization provides a significant 

performance improvement compared to the standard LSTM model, with a 

decrease in Root Mean Square Error (RMSE) of 11.63% on the test data. This 

finding indicates the importance of hyperparameter optimization in improving 

the accuracy of stock price prediction models, especially for the world's 

largest oil company such as Aramco, whose stock price can be affected by 

various macroeconomic and geopolitical factors. 
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1. INTRODUCTION 

The stock market plays a crucial role in the global economy and is often an indicator of a country's 

economic health. As one of the largest oil companies in the world, Saudi Arabian Oil Company (Aramco) has 

a huge market capitalization and significant influence on global economic stability, particularly in the Middle 

East region. After conducting an initial public offering (IPO) in December 2019, Aramco's stock became one 

of the most actively traded in the global market[1] . The volatility of its share price is influenced by various 

factors, including fluctuations in world oil prices, OPEC+ policies, geopolitical dynamics, and global energy 

demand, making the prediction of its movements an interesting topic to study.   

Stock price prediction is a complex yet very important field in investment management and financial 

analysis. In recent years, machine learning approaches have shown great potential in predicting stock market 

movements[2] . One prominent model is the Long Short-Term Memory (LSTM), which is known to capture 

long-term dependency patterns in time series data, such as stock price fluctuations[3] . However, the 

effectiveness of LSTM models is highly dependent on the proper selection of hyperparameters, such as the 

number of units in the hidden layer, dropout rate, learning rate, and batch size. Hyperparameter optimization 

can significantly improve prediction accuracy, and one of the widely used methods for this purpose is Grid 

Search, which systematically evaluates various hyperparameter combinations . [4], [5] 

Previous research has shown the superiority of LSTM over traditional models such as Random Forest 

and Logistic Regression in predicting stock movements[6] . Some studies even report prediction accuracy 

above 95% when using LSTM[7]–[9] . However, hyperparameter optimization remains a challenge, with some 

studies comparing the effectiveness of Grid Search against other methods such as Random Search[10], [11] . 

On the other hand, studies specifically on the prediction of stock prices of oil companies, such as those by 

Sagheer & Kotb (2019)[12] and Saidi et. Al (2020)[13] show that LSTM can identify price movement patterns 
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well, especially when the hyperparameters are optimized. However, no study has specifically tested the 

performance of LSTM with Grid Search optimization on Aramco stocks, so this study aims to fill that gap.   

This research focuses on three main aspects. First, it evaluates the performance of the standard LSTM 

model (without optimization) in predicting Aramco's stock price. Second, analyzing the impact of Grid Search 

optimization on improving the prediction accuracy of the model. Third, identifying the best hyperparameter 

combination for the LSTM model in the context of stock prediction of global-scale energy companies such as 

Aramco. The findings of this research are expected to provide empirical contributions to the development of 

stock price prediction models, especially in the application of deep learning for energy commodity stocks. In 

addition, the results can serve as a reference for investors and financial analysts in making more informed 

decisions. 

 

2. METHOD 

2.1.  Data and Data Sources 

 

 
Figure 1. Historical data chart of Aramco stock movements 

 

This study uses Saudi Arabian Oil Company (Aramco) daily stock price data obtained from Yahoo 

Finance for the period December 11, 2019 (IPO date) to December 31, 2023. The data used includes the 

opening price (Open), highest price (High), lowest price (Low), closing price (Close), and trading volume. The 

main focus of the research is on predicting the closing price of Aramco shares. 

The dataset is divided into two parts: training data and testing data with a proportion of 80:20. The 

training data is used to train the LSTM model, while the testing data is used to evaluate the performance of the 

model in stock price prediction. 

2.2.  Data Preprocessing 

Data preprocessing is an important step in the data analysis process, involving several steps, each of 

which aims to improve data quality and ease further analysis. The three main stages discussed here are data 

cleaning, data normalization, and data sequence generation. 

2.2.1. Data Cleaning 

Data cleaning is a crucial initial stage to remove missing values and outliers. By removing invalid or 

extreme values, we ensure that subsequent analysis is more accurate and reliable. Research shows that clean 

data can significantly improve the performance of data analysis models[14] . For example, in the context of 

meteorology, clean data from SEVIRI meteosats is critical to the nowcasting process, where the quality of the 

initial data is directly linked to the outcome of weather predictions .[14] 

2.2.2. Data Normalization 

After data cleaning, normalization is required to ensure that all features are distributed in the same 

range. One commonly used method is the Min-Max Scaler, which rescales the data so that it falls within a 

range[14], [15] . This normalization process helps in reducing the scale of differences between features, which 

can speed up the convergence of machine learning algorithms[16] . In the context of data modeling, especially 

regarding time series, normalization is very important as it removes biases caused by different scales between 

data series, improving the overall performance of the model .[17] 

2.2.3. Sequence Data Generation 

The next stage is the creation of sequence data. In this context, the historical data is converted into a 

sequence format with a window size of 60 days. This means that to predict the price on day 61, the previous 



               ISSN: 2622-626X 

 Int. J. Artif. Intell. Informatics, Vol. 3, No. 2, January 2025: 52-59 

54 

60 days of data are used as input. This format allows the model to capture temporal patterns in the data, which 

is very important in time analysis[16] . For example, the use of gated recurrent neural networks (RNNs) in time 

series analysis has proven to be effective in handling irregular data problems and filling in missing values by 

utilizing the sequence structure .[16] 

2.3.  LSTM Model Architecture 

Table 1. LSTM Model Architecture 

Layer 

(Sequence) 

Layer 

Type 
Main Parameters Output Dimension Function 

1 LSTM 

units=units 

return_sequences=True 
input_shape=(60, 1) 

(batch_size, 60, units) 

Receives a sequence of historical stock price data and learns 

short-term and long-term temporal patterns. Generates 
sequential output to be processed by the next LSTM layer. 

2 Dropout rate=dropout_rate (batch_size, 60, units) 
Randomly disabling some neurons during training to prevent 

overfitting and improve model generalization. 

3 LSTM 
units=units 

return_sequences=False 
(batch_size, units) 

Processes the sequence from the first LSTM layer and 

generates a single vector representation that summarizes the 
entire sequence. This allows the model to capture more 

complex temporal patterns. 

4 Dropout rate=dropout_rate (batch_size, units) 
A second regularization layer to further strengthen the 

model's resistance to overfitting. 

5 Dense units=25 (batch_size, 25) 

The fully connected hidden layer transforms temporal 

features into a more abstract representation, facilitating the 

mapping to the final prediction. 

6 Dense units=1 (batch_size, 1) 
Output layer that produces a single value prediction for the 

next period's stock price. 

This model structure incorporates several key components that are optimized for financial time series 

data analysis: 

1. First LSTM Layer: This layer accepts inputs with dimensions (60, 1), indicating that the model 

analyzes 60 historical data points sequentially for each prediction. The parameter 

return_sequences=True allows this layer to generate the complete sequential output required as input 

for the next LSTM layer. Each LSTM cell contains a gates mechanism (forget, input, and output) 

that allows the model to selectively retain or remove information, making it highly effective in 

capturing temporal patterns in stock price data. 

2. Dropout regularization: After the first LSTM layer, a Dropout layer with a specified dropout_rate is 

applied. This regularization mechanism randomly disables a number of neurons during training to 

prevent overfitting, improve model generalization, and reduce excessive dependencies on certain 

features in the training data. 

3. Second LSTM Layer: The second LSTM layer with return_sequences=False processes the output of 

the previous layer and produces a single vector representation that summarizes all sequences. This 

configuration allows the model to capture complex hierarchical patterns in financial time series data. 

4. Second Dropout Regularization: To further improve the model's resistance to overfitting, a second 

Dropout layer is applied after the second LSTM layer. 

5. Hidden Layer Fully Connected: The Dense layer with 25 units serves as a hidden layer that 

transforms the representation learned by the LSTM layer into more abstract features. This layer 

allows the model to map the learned temporal representation into a feature space that is more 

suitable for numerical value prediction. 

6. Output Layer: The final Dense layer with one unit serves as the output layer that generates stock 

price predictions. This architecture is optimized for regression tasks, resulting in the prediction of a 

continuous value that represents the stock price in the next period. 
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The overall architecture is designed to capture the complex temporal dynamics in stock price data, 

while the implemented regularization mechanism helps the model maintain a strong generalization ability over 

never-before-seen data. Parameter units can be adjusted to control the capacity of the model, with optimal 

values determined through empirical experiments on the datasets used. 

2.3. LSTM Implementation Without Optimization 

For the LSTM implementation without optimization, the following hyperparameters are used: 

 

Table 2. Basic hyperparameters of LSTM Model 
Parameters Value 

Number of units (units) 50 

Dropout rate (dropout_rate) 0.2 

Learning rate 0.001 

Batch size (batch_size) 32 

 

The model was trained using Adam's optimizer with a Mean Squared Error (MSE) loss function. 

Model performance was evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), coefficient of determination (R²), and accuracy metrics. 

2.4. LSTM Implementation with Grid Search Optimization 

For LSTM with Grid Search optimization, the hyperparameter search space is defined as follows: 

 

Table 3. Hyperparameter Search Space of Grid Search Optimization LSTM Model 
Parameters Search Space 

Number of units (units) [50, 100] 

Dropout rate (dropout_rate) [0.2, 0.3] 

Learning rate [0.001, 0.01] 

Batch size (batch_size) [16, 32] 

 

Grid Search performs a systematic search through all possible hyperparameter combinations and 

evaluates the performance of each using cross-validation. The hyperparameter combination with the lowest 

validation loss is selected as the optimal configuration. 

2.5. Model Evaluation 

The performance of both models was evaluated using several metrics to provide a comprehensive 

perspective: 

1. Root Mean Square Error (RMSE): Measures the square root of the average square of the difference 

between the predicted value and the actual value .[18] 

2. Mean Absolute Error (MAE): Measures the average absolute value of the difference between the 

predicted value and the true value .[19] 

3. Mean Absolute Percentage Error (MAPE): Measures the average percentage absolute error relative to 

the true value. 

4. Coefficient of Determination (R²): Measures the proportion of variation in the dependent variable that 

can be explained by the independent variable. 

5. Accuracy: Calculated as 100% - MAPE, shows the level of model accuracy in percentage form. 

Evaluation is performed on training data to assess the model's ability to learn data patterns, and on test 

data to assess the model's generalization ability to new data that has not been seen before. 
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3.     RESULTS AND DISCUSSION 

3.1.   Hyperparameter Search Results using Grid Search 

The hyperparameter search with Grid Search resulted in the following optimal parameter 

combinations: 

Table 4. Hyperparameter Search Results with Grid Search 
Parameters Value 

Number of units (units) 50 

Dropout rate (dropout_rate) 0.2 

Learning rate 0.01 

Batch size (batch_size) 16 

Best validation loss 0.000437 

 

Table 5 shows the evaluation results of various hyperparameter combinations during the Grid Search 

process: 

Table 5. Grid Search Results 

Units Dropout Learning Rate Batch Size Validation Loss 

50 0.2 0.001 32 0.000957 

50 0.2 0.01 16 0.000437 

50 0.2 0.01 32 0.000560 

50 0.3 0.001 16 0.000809 

50 0.3 0.001 32 0.000990 

50 0.3 0.01 16 0.000568 

50 0.3 0.01 32 0.000580 

100 0.2 0.001 16 0.000594 

100 0.2 0.001 32 0.000872 

100 0.2 0.01 16 0.000471 

100 0.2 0.01 32 0.000770 

100 0.3 0.001 16 0.000712 

100 0.3 0.001 32 0.000944 

100 0.3 0.01 16 0.001063 

100 0.3 0.01 32 0.000691 

 

From the above results, it can be seen that the hyperparameter combination with units=50, 

dropout_rate=0.2, learning_rate=0.01, and batch_size=16 provides the lowest validation loss of 0.000437, 

indicating superior model performance compared to other combinations. 

3.2.   Model Performance Comparison 

Table 6 shows the performance comparison between the LSTM model without optimization and 

LSTM with Grid Search optimization: 

 

Table 6. Model Performance Comparison 
Metrics LSTM Without Optimization LSTM with Grid Search 

Training Testing Training Testing 

RMSE 0.54 0.43 0.42 0.38 

MAE 0.38 0.33 0.26 0.30 

MAPE (%) 1.35 1.02 0.93 0.92 
R² 0.9729 0.7120 0.9833 0.7765 

Accuracy (%) 98.65 98.98 99.07 99.08 

 

Results show that the LSTM model with Grid Search optimization provides better performance 

compared to the LSTM model without optimization. On the test data, the LSTM with Grid Search achieves an 

RMSE of 0.38, which is lower than the LSTM without optimization (0.43), indicating an error reduction of 

11.63%. Similarly, the MAPE for LSTM with Grid Search (0.92%) is lower compared to LSTM without 

optimization (1.02%), indicating an improvement in prediction accuracy. 
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The R² value for the LSTM model with Grid Search is also higher (0.7765) compared to the LSTM 

without optimization (0.7120), indicating that the optimized model can better explain the variation in the data. 

The accuracy of the LSTM with Grid Search model reached 99.08% on the test data, slightly higher than the 

LSTM without optimization (98.98%). 

3.3.   Visualization of Prediction Results 

Figures 2 and 3 show a visual comparison between the actual price and the predicted price for the 

LSTM model without optimization and LSTM with Grid Search optimization on the test data. 

 
Figure 2. LSTM Prediction Results Without Optimization 

 

 
Figure 3. LSTM Prediction Results with Grid Search Optimization 

 

From the visualization, it can be observed that both models perform well in following the trend of 

Aramco's stock price. However, the LSTM model with Grid Search optimization shows a better match with 

the actual data, especially during periods of high volatility. 

3.4.  Analysis and Discussion 

The results show that hyperparameter optimization using Grid Search significantly improves the 

performance of the LSTM model in Aramco stock price prediction. This performance improvement can be 

explained through several factors: 

1. Learning Rate Optimization: Grid Search results show that a higher learning rate (0.01) provides better 

performance compared to the lower default learning rate (0.001). This indicates that the model 

requires larger steps during optimization to find a better global minimum. 

2. Optimal Batch Size: A smaller batch size (16) proved to be more effective compared to a larger batch 

size (32). Smaller batch sizes allow for more frequent updates of the model parameters, improving the 

model's ability to better capture patterns in the training data. 
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3. Network Architecture: Interestingly, the results show that the model with a smaller number of units 

(50) is better than the model with a larger number of units (100). This suggests that for the case of 

Aramco stock price prediction, a simpler model with a smaller number of parameters can reduce the 

risk of overfitting and provide better generalization. 

4. Regularization with Dropout: A lower dropout rate (0.2) results in better performance compared to a 

higher dropout rate (0.3). This suggests that for the Aramco stock data, a moderate level of 

regularization is sufficient to prevent overfitting without compromising the model's ability to learn 

from the data. 

This finding is in line with previous research that emphasizes the importance of hyperparameter 

optimization in deep learning models. Sezer et al. (2020)[2] highlighted that the performance of LSTM models 

in stock market prediction is highly dependent on the selection of appropriate hyperparameters. Similarly, 

Poernamawatie et. Al (2024)[20] showed that hyperparameter optimization can significantly improve stock 

price prediction accuracy. 

Interestingly, while both models show very high accuracy (above 98%), the LSTM model with Grid 

Search optimization still shows consistent improvement across all evaluation metrics. This suggests that even 

marginal improvements in prediction accuracy can have significant practical implications in the context of 

stock trading, where small differences in price can translate into substantial gains or losses. 

 

4.      CONCLUSION 

This study comprehensively compares the performance of the standard LSTM model with the version 

optimized through Grid Search in predicting the stock price of Saudi Arabian Oil Company (Aramco). The 

results show that the LSTM model is not only effective (>98% accuracy), but also has significant potential for 

practical applications in capital market analysis. Hyperparameter optimization was shown to quantitatively 

improve model performance, with a decrease in RMSE of 11.63% and an increase in R² from 0.7120 to 0.7765 

on the test data. The identified optimal configuration of 50 LSTM units, dropout 0.2, learning rate 0.01, and 

batch size 16 indicates that a relatively simple architecture with specific training parameters is suitable for this 

case. Although the absolute accuracy improvement is marginal, the economic implications are substantial in 

the context of stock trading, where more precise predictions can have a direct impact on profitability. 
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