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 This study compares the performance of the standard Long Short-Term 

Memory (LSTM) model with the LSTM model optimized using the Random 

Search method to predict the stock price of Spark New Zealand Limited. The 

data used is historical stock price data from Yahoo Finance for the period 

2018-2023. Model evaluation is performed using Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), coefficient of determination (R²), and accuracy metrics. The results 

showed that the standard LSTM model achieved Test RMSE performance of 

0.04, Test MAE of 0.03, Test MAPE of 0.73%, Test R² of 0.8571, and Test 

Accuracy of 99.27%. While the LSTM model with Random Search 

optimization achieved Test RMSE performance of 0.04, Test MAE of 0.03, 

Test MAPE of 0.78%, Test R² of 0.8302, and Test Accuracy of 99.22%. 

Although both models performed very well, the standard LSTM model was 

slightly superior in some evaluation metrics on the test data. This research 

provides insight into the effectiveness of hyperparameter optimization in the 

context of stock price prediction. 
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1. INTRODUCTION 

Stock price prediction is a complex and important area of research in computational finance. The 

ability to accurately predict stock price movements can provide a strategic advantage for investors and capital 

market analysts[1] . In recent years, deep learning-based approaches, particularly Long Short-Term Memory 

(LSTM) models, have shown promising performance in predicting financial time series data .[2] 

Spark New Zealand Limited is one of the largest telecommunications companies in New Zealand 

whose shares are actively traded. The volatility of the company's share price presents both challenges and 

opportunities for investors. Developing an accurate prediction model for Spark New Zealand shares can assist 

stakeholders in making more informed investment decisions. 

LSTM models have been proven effective in capturing both long-term and short-term temporal 

patterns in time series data[3]–[5] . However, the performance of LSTM models is highly dependent on the 

selection of appropriate hyperparameters, such as the number of units, dropout rate, learning rate, and batch 

size[6] . The selection of optimal hyperparameters can significantly improve the prediction accuracy. 

Random Search is one of the efficient hyperparameter optimization methods, where hyperparameters 

are randomly selected from a pre-defined distribution[7] . Several studies have shown that Random Search can 

produce models with equivalent or even better performance compared to more complex hyperparameter search 

methods in a shorter computation time .[8] 

Although many studies have examined the application of LSTMs for stock price prediction[9], [10] , 

studies that specifically compare the performance of standard LSTMs with LSTMs optimized using Random 

Search for Spark New Zealand stocks are limited. This study aims to fill the gap by analyzing the comparison 

between the two approaches. The problem formulation includes evaluating the performance of the standard 

LSTM model, the LSTM model with Random Search optimization, and the impact of hyperparameter 
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optimization on prediction accuracy. By using Yahoo Finance historical data for the period 2018-2023, this 

research is expected to contribute to the development of a more effective stock price prediction model, as well 

as provide insight for researchers and practitioners in the field of computational finance. 

 

2. METHOD 

2.1.  Data Collection 

 

 
Figure 1. Graph of historical stock movement data of Spark New Zealand Limited 

 

The data used in this study is historical Spark New Zealand Limited stock price data obtained from 

Yahoo Finance for the period 2018 to 2023. This dataset includes information on the opening price, closing 

price, highest price, lowest price, and daily trading volume. For the purpose of this research, the main focus is 

on the closing price of the stock as the prediction target variable. 

The data collection process is carried out using the Yahoo Finance API which allows the extraction 

of historical stock data in a structured manner. The collected data was then saved in CSV format to facilitate 

further processing and analysis. A total of around 1,260 daily data points were collected over the five-year 

period. 

2.2.  Data Pre-processing 

Data pre-processing is a crucial step in ensuring that the data used in modeling is of good quality. In 

this stage, several methods and techniques are applied to handle common problems such as missing values, 

normalization, and dataset sharing. The data pre-processing stage includes several important steps to ensure 

the quality of the data to be used in modeling: 

1. Handling Missing Data: One method that is often used to handle missing values is linear interpolation. 

This method is considered effective because it assumes that the change between values is linear, so it 

can fill in the gaps quite accurately[11]–[14] . Research by Liu et al. demonstrated the application of 

linear interpolation to impute missing values in CGM (Continuous Glucose Monitoring) data, which 

validated the success of this method in various fields[12] . In the context of another study, Crafoord 

et al. used linear interpolation to fill in missing values in measurement instruments, demonstrating the 

effectiveness of this technique in maintaining data integrity .[15] 

1. Data Normalization: Normalization is an important step in data pre-processing, especially for data 

used in machine learning models. The Min-Max Scaler technique, which transforms data values into 

a range[16] , has been shown to accelerate model convergence and improve training stability[17]–

[19] . Research on data normalization shows that this step can significantly improve model 

performance when the data used has different scales. 

2. Dataset Split: Splitting datasets into training and test data is a standard practice in machine learning, 

often in a proportion of 80:20. Performing a proper split ensures that the trained model can evaluate 

its performance on data that has never been seen before[20], [21] . Past research has shown that a 

proper split helps in reducing overfitting and ensuring model generalization .[14], [22] 

3. Sequence Establishment: Given the nature of time series data, defining sequences with a window 

length of 60 days is important to provide historical context for the predictions to be made by the 

model. Related research shows that this data format is well suited to LSTM models, which are 

specifically designed to capture temporal patterns in data .[23] 
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2.3.  LSTM Model Architecture 

The LSTM model used in this study adopts a layered (sequential) architecture designed to capture 

temporal dependencies in stock price data. The model consists of two LSTM layers with a configurable number 

of units, each followed by a dropout layer for regularization to prevent overfitting. The first LSTM layer is 

configured with return_sequences=True so that its sequential output can be processed by the next LSTM layer. 

After the LSTM layer, a dense layer with 25 units serves as an intermediate feature extractor, while the final 

dense layer with one unit generates the stock price prediction. In detail, the model architecture is organized as 

follows: 

1. First LSTM layer:

• Unit: Configurable (optimized via hyperparameters)

• Input Shape: (60, 1) (60 time step window with univariate input)

• return_sequences=True (to allow stacking with the next LSTM layer)

2. First Dropout Layer:

• Dropout Rate: Configurable (optimized via hyperparameters)

3. Second LSTM layer:

• Units: Same amount as the first layer

• return_sequences=False (because this is the last LSTM layer)

4. Second Dropout Layer:

• Dropout Rate: Same as first layer

4. Intermediate Dense Layer:

• 25 units (for additional feature extraction before final prediction)

5. Output Layer:

• 1 unit (generates stock price predictions in univariate format)

This architecture was chosen for its ability to model both long- and short-term patterns in time series

data, while maintaining model generalization through a dropout mechanism. Hyperparameter optimizations 

on the number of LSTM units and the dropout rate are performed to improve the predictive performance of the 

model. 

2.3. LSTM Implementation Without Optimization 

For the LSTM implementation without optimization, the following hyperparameters are used: 

Table 1. Basic hyperparameters of LSTM Model 
Parameters Value 

Units 100 

Dropout_rate 0.2 

Learning rate 0.001 
Batch_size 32 

The model was trained using Adam's optimizer and Mean Squared Error (MSE) loss function. Early 

stopping with patience=10 was applied to prevent overfitting and keep the best performing model on the 

validation data. 

2.4. LSTM Implementation with Random Search Optimization 

Random Search is implemented for hyperparameter optimization of the LSTM model with the 

following search space: 

Table 2. Hyperparameter Search Space of LSTM Model Random Search Optimization 
Parameters Search Space 

Units [50, 75, 100, 125, 150] 
Dropout_rate [0.1, 0.2, 0.3, 0.4, 0.5] 

Learning rate [0.0001, 0.001, 0.01, 0.1] 

Batch_size [16, 32, 64, 128] 

A total of 15 Random Search iterations were performed, where each hyperparameter combination was 

evaluated using cross-validation with validation data. The best hyperparameter combination found can be seen 

in Table 2. The LSTM model with this optimal hyperparameter is then retrained using all training data and 

evaluated using test data. 

2.5. Model Evaluation 

The performance of both models was evaluated using several metrics to provide a comprehensive 

perspective: 

1. Root Mean Square Error (RMSE): Measures the square root of the average square of the difference

between the predicted value and the actual value .[24]
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2. Mean Absolute Error (MAE): Measures the average absolute value of the difference between the 

predicted value and the true value .[25] 

3. Mean Absolute Percentage Error (MAPE): Measures the average percentage absolute error relative to 

the true value. 

4. Coefficient of Determination (R²): Measures the proportion of variation in the dependent variable that 

can be explained by the independent variable. 

5. Accuracy: Calculated as 100% - MAPE, shows the level of model accuracy in percentage form. 

All evaluation metrics were calculated for both models on training and test data to provide a 

comprehensive performance comparison. 

3.     RESULTS AND DISCUSSION 

3.1.   Hyperparameter Search Results with Random Search  

The results of 15 Random Search iterations for hyperparameter optimization of the LSTM model are 

shown in Table 3. Each iteration tries different hyperparameter combinations and evaluates the model 

performance using validation loss. 

 

Table 3. Hyperparameter Search Process using Random Search 

Iterations Units Dropout Rate Learning Rate Batch Size Validation Loss 

1 150 0.2 0.1 16 0.014381 

2 100 0.5 0.0001 128 0.002677 

3 100 0.5 0.0001 16 0.001234 

4 75 0.2 0.001 32 0.000796 

5 125 0.3 0.0001 64 0.001772 

6 125 0.5 0.0001 32 0.001143 

7 75 0.2 0.001 16 0.000652 

8 150 0.1 0.001 64 0.000616 

9 125 0.4 0.1 128 0.028873 

10 75 0.4 0.0001 16 0.001205 

11 50 0.4 0.1 64 0.087178 

12 125 0.4 0.01 128 0.000775 

13 150 0.2 0.0001 16 0.001108 

14 150 0.1 0.001 128 0.000875 

15 50 0.3 0.01 16 0.000680 

 

Based on the Random Search results, the best hyperparameter combination is obtained at the 8th 

iteration with the lowest validation loss of 0.000616. The optimal hyperparameter combination is: 

 

Table 4. Hyperparameter Search Results with Random Search 
Parameters Value 

Units 150 
Dropout_rate 0.1 

Learning rate 0.001 

Batch_size 64 

 

From Table 3, it can be observed that too high a value of learning rate (0.1) tends to result in greater 

validation loss (iterations 1, 9, and 11), indicating that the model has difficulty in convergence. Meanwhile, 

the combination of larger units (150) with lower dropout rate (0.1) and moderate learning rate (0.001) provides 

the best performance. 

3.2.   Model Performance Comparison 

The evaluation results for the standard LSTM model and the LSTM model with Random Search 

optimization on training data and test data are shown in Table 5. 

. 

Table 5. Comparison of Evaluation Metrics for Standard LSTM Model and LSTM with Random Search 

Optimization 
Metrics LSTM Without Optimization LSTM with Grid Search 

Training Testing Training Testing 

RMSE 0.05 0.04 0.06 0.04 

MAE 0.04 0.03 0.04 0.03 

MAPE 1.28% 0.73% 1.40% 0.78% 
R² 0.9885 0.8571 0.9861 0.8302 

Accuracy 98.72% 99.27% 98.60% 99.22% 
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From the data in Table 2, several important points can be observed: 

1. Standard LSTM Model: This model performed very well with a Train RMSE of 0.05 and a Test RMSE 

of 0.04. The low MAPE values (1.28% on training data and 0.73% on test data) indicate minimal 

prediction error. The high R² values (0.9885 in the training data and 0.8571 in the test data) indicate 

the ability of the model to explain variations in stock prices. The accuracy of the model reached 

98.72% in the training data and 99.27% in the test data. 

2. LSTM model with Random Search Optimization: This model showed comparable performance with 

Train RMSE of 0.06 and Test RMSE of 0.04. The MAPE value of 1.40% on the training data and 

0.78% on the test data also indicates a low error rate. The R² values of 0.9861 in the training data and 

0.8302 in the test data indicate good predictive ability. The accuracy of this model reached 98.60% in 

the training data and 99.22% in the test data. 

3. Comparison of the two models: Both models performed very well in predicting Spark New Zealand's 

share price. The standard LSTM model performed slightly better on almost all evaluation metrics, 

with insignificant differences. On the test data, the standard LSTM model produced a MAPE of 0.73% 

compared to 0.78% for the optimized model, and an R² of 0.8571 compared to 0.8302. The difference 

in accuracy between the two models on the test data was also very small (99.27% vs 99.22%). 

3.3.   Model Performance Analysis 

Figures 2 and 3 show the visual comparison between the actual price and the predicted price for the 

LSTM model without optimization and LSTM with Grid Search optimization on the test data. 

 
Figure 2. Comparison graph of train and test data of LSTM model with Random Search optimization. 

 

 
Figure 3. Comparison graph of train and test data of LSTM model without optimization 

 

Although hyperparameter optimization using Random Search successfully found the optimal 

hyperparameter combination based on validation loss, the standard LSTM model still performed slightly better 

on the test data. This can be explained by several factors: 
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1. Overfitting vs Generalization: The LSTM model with Random Search optimization has a larger 

number of units (150 compared to 100 in the standard model) and a lower dropout rate (0.1 compared 

to 0.2). This combination may cause the model to be more complex and potentially overfitting the 

training data. This is reflected in the larger difference between the performance on the training and 

test data of the optimized model. 

2. Prediction Stability: The standard LSTM model shows a smaller performance degradation when 

applied to the test data compared to the optimized model. This indicates that the standard model has 

better prediction stability and stronger generalization ability. 

3. Complexity and Performance Trade-off: While optimized models have a more complex architecture, 

the increased complexity does not always result in significant performance improvements, especially 

if the data being analyzed has relatively simple or consistent patterns. 

4. Effectiveness of Random Search: Random Search may not find a truly optimal combination of 

hyperparameters due to the limited number of iterations (15 iterations). Increasing the number of 

iterations or using more sophisticated hyperparameter optimization methods such as Bayesian 

Optimization may result in better performing models. 

3.4.  Implications for Investment and Trading 

Both models showed very high accuracy (>99% on the test data), indicating significant potential for 

application in investment decision-making on Spark New Zealand shares. However, some practical 

implications need to be considered: 

1. Short-term vs Long-term Prediction: The LSTM model developed in this study shows good 

performance for short-term prediction (based on the previous 60-day window). However, the 

performance for long-term prediction needs to be further tested. 

2. Integration with External Factors: The model only uses historical stock price data without considering 

external factors such as news, company financial reports, or overall market trends. Integration of such 

factors can improve prediction accuracy especially during periods of high market volatility. 

3. Application in Trading Strategies: High prediction accuracy can be integrated into algorithmic trading 

strategies, but it is necessary to consider factors such as transaction costs, bid-ask spreads, and stock 

liquidity that may affect the overall profitability of the strategy. 

Based on research by Sanhatham (2024)[5] , deep learning models such as LSTM have been proven 

effective in stock price prediction in various markets and sectors. However, they also emphasized the 

importance of thorough model evaluation and consideration of practical factors in model implementation for 

real investment decision making. 

 

4.      CONCLUSION 

This study compares the performance of the standard LSTM model with the LSTM model optimized 

using Random Search to predict the stock price of Spark New Zealand Limited based on Yahoo Finance 

historical data for the period 2018-2023. The results show that both models are able to provide highly accurate 

predictions, with accuracy rates exceeding 99% on the test data, confirming the effectiveness of the LSTM 

architecture in financial time series modeling. In particular, the standard LSTM model with manually set 

hyperparameters (units=100, dropout_rate=0.2, learning_rate=0.001, batch_size=32) showed slightly superior 

performance compared to the optimized model, with a Test RMSE value of 0.04, Test MAPE 0.73%, and Test 

R² 0.8571. Meanwhile, Random Search successfully found the optimal hyperparameter combination 

(units=150, dropout_rate=0.1, learning_rate=0.001, batch_size=64), but the increased model complexity did 

not provide a significant improvement in accuracy, with a Test RMSE of 0.04, Test MAPE of 0.78%, and Test 

R² of 0.8302. This finding indicates that, in the context of Spark New Zealand stock price prediction, LSTM 

models with simple architectures can perform equally or even better than more complex and optimized models. 

In addition, both models show good generalization ability, with performance on test data remaining high 

despite a slight decrease compared to training data, demonstrating the reliability of the models in predicting 

new data. These results provide practical implications for researchers and practitioners in the field of 

computational finance, that a simple approach with appropriate hyperparameters can be an efficient solution 

for stock price prediction, without the need for complex optimization. Future research could explore alternative 

optimization methods or expand the dataset to validate these findings on other financial instruments. 
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